objectDetector_Yolo_traffic/nvdsinfer_custom_impl_Yolo/yoloPlugins.cpp
2022-09-09 09:02:57 +07:00

128 lines
3.9 KiB
C++

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "yoloPlugins.h"
#include "NvInferPlugin.h"
#include <cassert>
#include <iostream>
#include <memory>
namespace {
template <typename T>
void write(char*& buffer, const T& val)
{
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template <typename T>
void read(const char*& buffer, T& val)
{
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
} //namespace
// Forward declaration of cuda kernels
cudaError_t cudaYoloLayerV3 (
const void* input, void* output, const uint& batchSize,
const uint& gridSize, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream);
YoloLayerV3::YoloLayerV3 (const void* data, size_t length)
{
const char *d = static_cast<const char*>(data);
read(d, m_NumBoxes);
read(d, m_NumClasses);
read(d, m_GridSize);
read(d, m_OutputSize);
};
YoloLayerV3::YoloLayerV3 (
const uint& numBoxes, const uint& numClasses, const uint& gridSize) :
m_NumBoxes(numBoxes),
m_NumClasses(numClasses),
m_GridSize(gridSize)
{
assert(m_NumBoxes > 0);
assert(m_NumClasses > 0);
assert(m_GridSize > 0);
m_OutputSize = m_GridSize * m_GridSize * (m_NumBoxes * (4 + 1 + m_NumClasses));
};
nvinfer1::Dims
YoloLayerV3::getOutputDimensions(
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
{
assert(index == 0);
assert(nbInputDims == 1);
return inputs[0];
}
bool YoloLayerV3::supportsFormat (
nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
return (type == nvinfer1::DataType::kFLOAT &&
format == nvinfer1::PluginFormat::kLINEAR);
}
void
YoloLayerV3::configureWithFormat (
const nvinfer1::Dims* inputDims, int nbInputs,
const nvinfer1::Dims* outputDims, int nbOutputs,
nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs == 1);
assert (format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
int YoloLayerV3::enqueue(
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
CHECK(cudaYoloLayerV3(
inputs[0], outputs[0], batchSize, m_GridSize, m_NumClasses, m_NumBoxes,
m_OutputSize, stream));
return 0;
}
size_t YoloLayerV3::getSerializationSize() const noexcept
{
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSize) + sizeof(m_OutputSize);
}
void YoloLayerV3::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer);
write(d, m_NumBoxes);
write(d, m_NumClasses);
write(d, m_GridSize);
write(d, m_OutputSize);
}
nvinfer1::IPluginV2* YoloLayerV3::clone() const noexcept
{
return new YoloLayerV3 (m_NumBoxes, m_NumClasses, m_GridSize);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerV3PluginCreator);